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Abstract 

Solving crystal structures by applying direct methods to 
single-crystal data is a relatively easy task for structures 
with up to 100 atoms in the asymmetric unit. Their 
successful application to powder data is still a challenge 
unless the size of the structure is moderate. The rate of 
success depends on several factors like the efficiency of 
the full-pattern-decomposition programs, the peak over- 
lapping, the presence of preferred orientation in the 
powder specimen, the nature of the background, the type 
of radiation used for collecting experimental data etc. 
The main factors are analysed in order to provide a clear 
description of the specific problems that have to be 
forced when direct phasing from powder data is 
attempted. 

1. Introduction 

It is usual to say that direct methods solved in practice 
the phase problem for small molecules. This is not true 
when only powder data are available: in this case, even a 
crystal structure with few atoms in the asymmetric unit 
may constitute a considerable challenge. The difficulties 
begin with the indexing of the reflections and the 
definition of the space group. These problems are far 
from being trivial: their solution requires modem 
computational programs and keenness in their use. 
They are not treated here: we will assume that indexing 
and space-group problems have already been solved. Our 
interest will be focused on the consequences, on direct- 
methods effectiveness, of a characteristic feature of the 
powder diffraction, the collapse of the three-dimensional 
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reciprocal space of the individual crystallites on the one- 
dimensional 20 axis. The possible effects may be 
schematized as: 

(a) overlapping, accidental or systematic, of the 
diffraction peaks; 

(b) considerable background, not easily definable with 
accuracy; 

(c) preferred-orientation effects when the powder is 
not ideal (i.e. because of the non-random distribution of 
crystallites). 

In such conditions, the quality of the information 
provided by a diffraction experiment deteriorates. 
While, for single-crystal data, the diffraction experi- 
ment loses the phases but preserves the knowledge of 
the diffraction moduli, in a powder diffraction 
experiment this last information is partially lost. 
Estimates of the structure-factor moduli may be 
obtained by decomposing the powder diffraction 
pattern; however, the unavoidable uncertainty of the 
estimates can strongly influence direct-methods 
efficiency. Recent advances in instrumentation (high- 
resolution neutron and synchrotron) techniques pro- 
vide more informative diffraction patterns and require 
similar advances in the methods for treating the data. 

In the following sections, we will schematically 
describe the various special difficulties that must be 
faced when powder data are used, including the 
characteristic problems arising when neutron data are 
employed. In order to show the practical implications of 
the various problems, some applications will also be 
described. We will use as test data the experimental 
diffraction patterns of the test structures quoted in 
Table 1. 

2. Extracting structure-factor moduli  

The recovery of the structure-factor moduli from a 
powder diffraction pattern is usually performed by a 
full-pattern-decomposition program: a modulus is 
associated with each component reflection so making 
possible the use of direct methods. The efficiency of the 
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Table 1. Code name and crystallochemical data for the 
test structures 

X: data collected by home diffractorneter; N: neutron data; S: 
synchrotron data. 

Code Space group Cell content 

AGPZ (X) Pbca AgN2C3H 3 
BACO (N) C2/m BaC204 • DzO 
BAER (X) R3m Sis4Olo83[CloHi5N2] 
BENZ (S) P21/a C6H 6 • C6F 6 
CABA (X) P4/mmm Ndl.33Cao.25 Bal.a2Cu2.9zO6.8 
CFBR3 (N) Pnma CFBr 3 
CF3BR (N) P21/a CBrF 3 
CFCL (N) Fdd2 CF2C12 
CFI (N) Cmca CF3I 
CIM (X) P21/n CIoN6S 
CROP (X) Imma CrPO4 
CROX (X) Pi Cr802~ 
CUPZ (X) Pbca CuNzC3H 3 
ERVO (N) 141/amd ErVO 4 
FECOAS (N) P4/nmm Fel.6Co0.aAs 
GLYCIN (X) P21/¢ N2C403 
HOBA (S) P m m m  HoBa2Cu2.9006.85 
HOFE (N) 141/mmm HoFesAI 7 
LAMO (X) P21/a LaM%O s 
LASI (N) P~_l/c LazSi207 
LEV (S) R3m [5i540108] • 3C8NH16 
MES (X) P21/c C6NO4SHI3 
METYL (S) I222 NaCD 3 
NBPO (S) C2/c Nb3 (NbO)2(PO4) 7 
NDBA (X) P4/mmm NdSrBaCul.8806. 8 
NIZR (X) P21/n Ni0.sZr2(PO4) 3 
PBS (S) Pbca PbSzO 3 
PICO (X) P i  Pb2C408 
RUCO (X) Ibam RuC404 
RUHG (X) P21/c HgRuC404 
SAPO (X) P m m m  [(Si,AI,P)32064]. 2TPAOH 
SBPO (S) P21/n Sb2(PO4) 3 
SIGMA2 (X) 141/amd Si64O1284[C10HlvN] 
STRIA (N) C2/c C3H3N 3 
SULPH (N) Pbcm D2S 
T83 (X) lmma Cs(A1,Ti)O 4 
TEAS (N) 141/amd TbAsO4 
TENI (N) Amm2 TbNiC 2 
TIPORF (X) 14/m TiC12NnC44Hz8 
TRAN (X) R3c LiHsTil.ssIno.15P3Olz 
YONO (S) P21 Y40(OH)gNO3 

decomposition program first depends on" the quality of 
the pattern: if high-resolution neutron or X-ray 
(synchrotron) techniques are used, and the crystal 
structure is not too complex, a reliable intensity could 
be associated with each component reflection. Such an 
ideal situation does not occur for more complicated 
structures or when systematic (because of the symmetry) 
overlapping occurs. Special care in the extraction of the 
structure-factor moduli should be taken when non- 
conventional experimental devices are used (see e.g. 
Lou~r, Lou~r & Touboul, 1992). 

Among the programs dedicated to pattern 
decomposition, we quote ALLHKL (Pawley, 1981), 
XRS-82 (Baeflocher, 1982), LSQPROF (Jansen, Peschar 
& Schenk, 1992), PROFIT (Toraya, 1986), FULLPROF 
(Rodrigues-Carvajal, 1990), BER-HKL (Berar, 1990), 

M-PROFIL (Fitch, Murray & Jouanneaux, 1995), 
FULFIT (Jansen, Schafer & Will, 1988). 

The efficiency of any decomposition program also 
depends on the mathematical techniques on which it is 
based. We will make explicit reference to two prototype 

z approaches [but alternative methods do exist, e.g. 
8 Bricogne (1991), Gilmore, Henderson & Bricogne 
4 
1 (1991)]: the Pawley (1981) technique and the Le Ball 
4 algorithm (Le Bail, Duray & Fourquet, 1988). ALLHKL 
1 (Pawley, 1981), a widely used program based on the 
4 Pawley technique, performs a least-squares fitting of the 
4 diffraction pattern in order to evaluate integrated 
8 
8 intensities. Such intensities, together with background, 
4 peak shape and cell dimensions, are parameters to be 

12 refined in the least-squares approach. When substantial 
1 overlap occurs, the intensity values are highly correlated 
8 
4 and the technique can provide negative intensity values. 
2 Pawley was aware of the problem and introduced slack 
4 constraint terms to avoid such undesirable effects. The 
1 problem was not obviated and has been revisitecl by 
2 Toraya (1986), Jansen, Peschar & Schenk (1992) and 
4 
4 Sivia & David (1994), who tackled the problem of highly 
1 correlated positive and negative intensities. 
4 In the programs based on the Le Bail algorithm, the 

16 problem of wild intensity variations is surmounted since 
2 
1 the algorithm intrinsically tends to equipartition inten- 
4 sities when peaks overlap. In our applications, we will 
8 use the program EXTRA (Altomare, Cascarano, 
1 Giacovazzo, Guagliardi, Molitemi, Burla & Polidori, 
4 1995), a Le Bail algorithm based decomposition 
8 
1 program. Programs based on the Pawley technique will 
4 probably provide sets of diffraction magnitudes substan- 
1 tiaUy different from those based on the Le Bail 
4 algorithm, as will be shown in the next section. 
8 
4 It is worthwhile stressing that pattern-decomposition 
4 programs play a crucial role in the success of direct 
2 methods. Any error, casual or systematic, in the estimate 
2 of the structure-factor moduli will weaken the efficiency 
6 of the methods. Since they extract the phase values from 
2 

the moduli, wrong phases will probably be derived from 
biased moduli. In order to reduce the ambiguity caused 
by the overlap, some procedures based on the Patterson 
squaring method (David, 1987; Cascarano, Giacovazzo, 
Guagliardi & Steadman, 1991; Estermann, McCusker & 
Baerlocher, 1992; Estermann & Gramlich, 1993) can be 
used in combination with profile-fitting procedures. 

3. The structure-factor statistics 

In §2, we emphasized the fact that, when two or more 
reflections heavily overlap, the Pawley technique often 
provides negative intensities for some of the reflections 
overlapping: to compensate, single individual intensities 
larger than the overall intensity clump could be provided. 
On the contrary, the Le Bail algorithm intrinsically tends 
to equipartition the overall intensity among the severely 
overlapping reflections. The general statistical conse- 
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quence is that the dispersion of the structure-factor 
amplitudes is expected to be higher for methods based on 
the Pawley technique than for methods based on the Le 
Bail algorithm. In order to give some numerical detail, 
we have applied ALLHKL and EXTRA to the experi- 
mental diffraction patterns of CROX and YONO (see 
Table 1). The structure-factor amplitudes derived were 
transformed by SIRPOW.92 (Altomare, Cascarano, 
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Fig. 1. Observed IE[ distributions obtained when ALLHKL and EXTRA 
are applied to the experimental diffraction pattern of CROX. The 
theoretical Wilson distribution for a centrosymmetric space group is 
also shown. 
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Fig. 2. Observed [El distributions obtained when ALLHKL and EXTRA 
are applied to the experimental diffraction pattern of YONO. The 
theoretical Wilson distribution for an asymmetric space group is also 
shown. 

Table 2. Moments of  distributions for  CROX and YONO 
as examples of  centric and acentric structures 

The (IEI z) and (IIEI 2 -  11) moments are given for the data sets 
extracted by ALLHKL and EXTRA, respectively. Some values of the 
cumulative N(IEI z) distributions are also shown. 

<IEI) 

(llEI 2 - 11) 

CROX YONO 

ALLHKL 0.698 0.834 
EXTRA 0.903 0.898 
Theoretical 0.798 0.886 

ALLHKL 1.076 0.824 
EXTRA 0.656 0.703 
Theoretical 0.968 0.736 

N(0.2) 
ALLHKL 0.434 0.262 
EXTRA 0.136 0.145 
Theoretical 0.345 0.181 

Giacovazzo, Guagliardi, Bufla, Polidori & CamaUi, 
1994) into normalized amplitudes IEI; their distributions 
are shown in Figs. 1 and 2, and some moments of the 
distributions are given in Table 2. We observe: (a) 
A LLHKL pattern decomposition always ends with a too 
high percentage of negative intensities, which are 
assumed equal to zero when input into SIRPOW.92. 
This explains the too high values of P(IE[) for [El close 
to zero; (b) ALLHKL tends to produce centrosymmetric 
[El distributions while EXTRA (as all the Le Bail 
algorithm based programs) tends towards non-centric 
distributions. 

The final suggestion coming from the above observa- 
tions is that the Wilson statistics may not be so 
informative about the presence of the inversion centre 
in the space group as occurs for single-crystal data. 
Indeed, most of the features of the experimental 
distribution function are pattern-decomposition-method 
dependent rather than crystal-structure dependent (see 
also Cascarano, Favia & Giacovazzo, 1992; Estermann, 
McCusker & Baerlocher, 1992). 

4. The role of the background in the normalization 
process 

The background may be divided into a smooth and a 
structured part; the first is due to inelastic and resonant 
scattering, the second to TDS and, when present, to the 
amorphous content. The structureless part may be 
modelled by physically based equations (Suortti & 
Jennings, 1977): TDS, to a good approximation, is 
equal to the part of the Bragg scattering due to thermal 
motion. Very recently, a significant result has been 
obtained by Riello, Fagherazzi, Clemente & Canton 
(1995), who obtained a relationship which, on a physical 
basis, models the three most important background 
scattering components: air scattering, incoherent scatter- 
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ing and average diffuse scattering due to thermal disorder 
plus first-kind lattice disorder. 

In the usual applications for crystal structure determi- 
nation, the background is modelled by a polynomial of a 
suitably high order (usually up to order ten). Errors in the 
model of the peak shape will cause errors in the 
background and consequently errors in the estimate of 
the structure-factor amplitudes. We pay attention here to 
the high-angle region of the pattern, where, for X-ray 
data, the decay of the scattering-factor magnitudes with 
sin0/2 makes the errors in the background definition 
critical. Since the structure-factor amplitudes are small, 
even small errors in the background modelling can 
determine non-negligible relative changes in the ampli- 
tude estimation. 

Unfortunately, in this high-angle section of the pattern, 
peaks are often broad; then peak tails are long and the 
separation of the peak contribution from the background 
is difficult. 

The normalization of the structure factors is critically 
dependent on the background definition at high angles. 
Indeed, the value of the overall temperature factor, as 
determined by a Wilson plot, is strongly influenced by 
the average IFI 2 value in that region. Quite frequently, 
different full-pattern-decomposition programs provide 
sets of structure-factor amplitudes that, submitted to a 
Wilson-plot process, produce different thermal-factor 
values. For example, CROX structure-factor amplitudes 
derived by ALLHKL show° an overall thermal factor 

2 2 B = l . 7 7 A ,  while B=0 .85A if EXTRA is used. In an 
2 analogous way, PBS data show B =  1.150,~ when 

processed by ALLHKL, B = 1.25 ,~2 when processed by 
EXTRA. 

Often, the Wilson scaling process may end with a 
negative overall thermal factor (Cascarano, Favia & 
Giacovazzo, 1992). Such a result has no physical 
meaning and is often caused by (a) omission of weak 
reflections from the set of processed data (Cascarano, 
Favia & Giacovazzo, 1992); (b) truncation of experi- 
mental data to sin0/2 values where Debye effects are 
important (Hall & Subramanian, 1982; Cascarano, 
Giacovazzo & Guagliardi, 1992); (c) imperfect model- 
ling of the background and of the peak shape (Lutterotti 
& Scardi, 1990). Even the imperfect absorption correc- 
tion for capillary samples or the superficial roughness of 
flat powder samples in the Bragg-Brentano technique 
could influence the final value of the overall thermal 
factor. If the Wilson plot provides a negative overall 
thermal factor, one should reconsider the entire process 
of diffraction-pattern decomposition. 

5. The role of the weak reflections 

To omit weak reflections from the set of integrated 
intensities is not critical for Patterson methods but may 
be ruinous for direct methods. The following may be 
observed: 

(a) Omission of weak reflections in a Wilson-plot 
procedure causes the average intensity for each shell of 
reciprocal space to increase, so producing errors in the 
scaling factor (Rogers, Stanley & Wilson, 1955; Hall & 
Subramanian, 1982; Cascarano, Giacovazzo & Gua- 
gliardi, 1991). If the proportion of unobserved data 
increases with sin 0/2 (as usual), the value of the overall 
thermal factor B will be smaller than the true one. As a 
consequence, the structure-factor distribution may appear 
acentric if the structure is centric, or centric if the 
structure is hypercentric or has some pseudo-translational 
symmetry. 

(b) The Pawley (1981) technique for the full pattern 
decomposition frequently generates negative intensity 
estimates. Omitting the corresponding reflections from 
the Wilson-plot process causes the systematic errors 
described in (a); putting those intensities to zero 
generates an opposite type of error. In this case, the 
average intensity for each shell decreases and, in 
agreement with previous observations, the estimated B 
value will be too large and the structure-factor-amplitude 
distribution will appear centric for acentric structures or 
hypercentric for centric ones. Techniques such as those 
proposed by Jansen, Peschar & Schenk (1992) and Sivia 
& David (1994) should necessarily integrate the Pawley 
method. 

(c) Weak reflections are of great importance for the 
phasing process. Several probabilistic formulas make 
explicit use of the information contained in the weak 
intensities: some examples are the P10 formula (Cascar- 
ano, Giacovazzo, Camalli, Spagna, Burla, Nunzi & 
Polidori, 1984), which estimates triplet invariants via a 
ten-node figure spanning all the reciprocal space, and the 
SAYTAN procedure (Debaerdemaker, Tate & Woolfson, 
1988). For the reader not familiar with direct methods, 
we recall that the phase estimate of the triplet invariant 

t~ --  ~h I + ~h 2 + ¢])h3 011 + h 2 + h 3 --  0) 

is obtained via the joint probability distribution 

P(Eh,, Eh 2, Eh 3, Ek, Ehl+k, Ehl-k,  Eh2+k, Eh2-k, 

Eh3+k, Eh3-k), 
where k is a free vector. The efficiency of the method 
(able to identify negative cosine triplets) relies on the 
simultaneous use of both strong and small [El values. If 
the small IEl's are systematically omitted, the Pl0 
formula cannot work: a similar conclusion holds for the 
SA YTAN procedure. 

Weak reflections are involved in some important 
figures of merit aiming at recognizing the correct from 
the various false solutions provided by a multisolution 
process. The best known is the so-called psi-zero figure 
of merit (Cochran & Douglas, 1957) based on a special 
set of triplet invariants formed by two strong and one 
weak reflections. Of course, omission of weak reflections 
does not allow one to construct psi-zero triplets. Weak 
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reflections play a central role in all the formulas 
estimating negative quartet invariants (Schenk, 1973; 
Hauptman, 1975; Giacovazzo, 1975, 1976). Such 
invadants (statistically recognized because their cross 
magnitudes are small) are used both in an active way 
(Sheldrick, 1991; Cascarano, Giacovazzo, Moliterni & 
Polidori, 1994) and in a passive way as a figure of merit. 

From the considerations made in points (a), (b), (c), it 
should be concluded that omitting weak reflections 
distorts the normalized amplitudes and therefore reduces 
the effectiveness of direct methods. The question is now: 
are weak reflections estimated sufficiently well to be 
safely used? Or are the errors in their estimates so large 
that their usefulness in a phasing procedure is negligible 
in practice? SIRPOW.92 applications suggest that the use 
of weak reflections is not only useful but often necessary, 
even if the problem of the reliability of their amplitude 
estimate is far from being optimally solved. 

6. Amount of information in a powder diagram 

If two or more peaks in a powder diffraction pattern 
heavily overlap, the integrated intensities of the reflec- 
tions overlapping are highly correlated. As a conse- 
quence, as soon as the intensity clump is estimated the 
individual intensities cannot be considered as statistically 
independent. The question now is: is it possible to take 
into account the correlation among intensities in order to 
obtain an estimate of the statistically independent 
intensities contained in a powder diffraction pattern? 
This problem has several implications: (a) direct methods 
work well when the ratio (number of independent 
intensities)/(number of atoms to find) is sufficiently 
high (say larger than 7); (b) usual crystallographic 
least-squares refinements consider observations as 
statistically independent of each other: their efficiency 
is determined by the ratio (number of independent 
observations)/(number of parameters to refine); (c) how 
the maximum range of 20 to be exploited in a direct 
phasing procedure should be defined. At high sin 0/2 
ranges, where the overlapping is extremely high and 
the contrast (diffraction spot intensity)/(backgrotmd 
intensity) is extremely low, it may occur that the number 
of independent observations in the range is quite small. 
In such a case, the interval could be omitted from the 
calculations. 

The above observations show that a qualitative 
estimate of the amount of information provided by a 
pattern allows one to guess the rate of success of a direct 
phasing process and about the reliability of the refine- 
ment process. An algorithm has recently been proposed 
by Altomare, Cascarano, Giacovazzo, Guagliardi, 
Moliterni, Burla & Polidori, 1995), which, via the 
systematic study of the peak overlap, is able to provide 
an estimate of the statistically independent observations. 
In Table 3 we give, for three test structures, the value of 
M (number of symmetry-independent reflections lying in 

Table 3. For the test structures BACO, SAPO and SBPO 
values of Sm~2 [the maximum observed value of 
(sin 0~2)2], M (the number of symmetry-independent 
reflections lying in the measured range), Min d (the 
number of statistically independent observations in the 
same range) and Np (the number of structural param- 
eters to vary in an isotropic least-squares procedure) 

are given 

2 M Min d Np Smax 

BACO 0.26 278 109 22 
SAPO 0.17 686 189 78 
SBPO 0.30 1206 266 68 

the measured 20 range), Min d (number of statistically 
independent observations belonging to the same range) 
and Np (number of structural parameters to be refined in 
an isotropic least-squares procedure). The table clearly 
suggests that the ratio (number of independent observa- 
tions)/(number of parameters to refine) is often very low, 
and this does not allow high accuracy in the determina- 
tion of the structure parameters. Thus, supplementary 
information is needed for a sufficiently good refinement 
of a crystal structure. Usually, it comes from: (a) 
elimination of some of the parameters as independent 
variables by constraining them to be functions of others 
(Immirzi, 1980; Pawley, 1980); (b) introduction of 
restraints on some geometric or energy parameters 
(Baerlocher, 1993; Elsenhans, 1990; Izumi, 1989); (c) 
the integration of an X-ray diffraction pattern with a 
neutron pattern. Such a practice is suggested by fact that 
X-rays and neutrons are scattered by different mechan- 
isms (Larson & Von Dreele, 1987). 

7. The role of the preferred orientation 

Texture in the powder specimen systematically distorts 
the intensity ratios. In the absence of any information on 
preferred orientation, decomposition programs will 
provide, as a measure of integrated Lorentz-polariza- 
tion-corrected intensity, the biased value 

IF~,12 = IFkl2Ok, (1) 

where O k is the preferred-orientation-correction factor. 
Since direct methods derive the phase values from the 
structure-factor amplitudes, systematic errors in their 
estimates will reduce the rate of success for the phasing 
process. To overcome this problem, one should be able to 
obtain intensities corresponding to a randomly oriented 
specimen. This may be done by measuring pole-density 
distributions (Bunge, Dahms & Brokmeier, 1989; 
JS_rvinen, 1993) but the procedure requires a multiaxis 
goniometer and additional experimental work. Perform- 
ing such an additional experiment is rewarding in terms 
of direct-methods efficiency. However, if such work has 
not be carried out, an alternative procedure may be 
applied to the usual powder diffractometer data provided 



336 DIRECT METHODS AND POWDER DATA 

the sample has cylindrical symmetry: a simple statistical 
analysis of the normalized structure factors may reveal 
the presence of preferred-orientation planes before 
starting the phasing process (Altomare, Cascarano, 
Giacovazzo & Guagliardi, 1994; Altomare, Cascarano, 
Giacovazzo, Guagliardi, Moliterni, Burla & Polidori, 
1995; Peschar, Schenk & Capkovfi, 1995). Once this has 
been done and the function Ok has been determined, then 

IFkl 2 = IF~,lZOk ' 

may be obtained. The normalized structure factor 
corresponding to IFkl 2 should be closer to the true 
values than the IE~,12's: as a consequence, the phasing 
process should be more straightforward and, in the end, 
more accurate atomic parameters should be obtained. 

8. About the radiation type 

Positivity and atomicity of the electron density are 
traditionally considered as basic conditions for direct 
methods. The Cochran (1955) formula, which estimates 
the triplet phase invariants @, is based on the above 
postulates and may be written as follows: 

P(~]IEh, l, IEh2], IEh.~ l ) "  [27r10(G)] -l exp(Gcos ~), 

(2) 
where I0 is the modified Bessel function of order zero 
and 

G = 2 E. Eh2Eh 3 U;q '/2 

Neq is the so-called equivalent number of atoms in the 
unit cell and, for X-rays, is calculated via 

geql/2:j~___lZ3/(j=~lZj2) 3'2, (3 )  

where Z: is the atomic number of the jth atom. Neutron 
powder data are often collected for crystal structure 
analysis. In this case, negative values of the scattering 
amplitude b are allowed and the positivity postulate is 
violated. It may be shown that (2) is still valid 
(Hauptman, 1976) provided (3) is replaced by 

N 3 N~q '/2 =j~=lbJ/(j=~lb2) 3/2 (4) 

What are the consequences of the violation of positivity 
for direct methods? The question has been reviewed by 
Altomare, Giacovazzo, Guagliardi & Siliqi (1994). The 
conclusions may be summarized as follows: 

(i) If negative amplitudes mix in (4) with positive 
ones, the absolute values of N~q increases. This makes 
triplet relationships less reliable. If ~--~,~= l b3 = 0, then Neq 
goes to infinity and the triplet estima~ is impossible. 

(ii) Quartet invariants depend on the even powers of 
the scattering amplitudes and are therefore not influenced 
by the signs of the various b. However, negative quartets 

are not readily recognized when the positivity criterion is 
violated. This makes the figures of merit finding the 
correct solution among the various ones given by a 
multisolution approach less efficient. 

(iii) The P10 formula (Cascarano, Giacovazzo, 
Camalli, Spagna, Burla, Nunzi & Polidori, 1984) 
depends on the lowest odd powers of the scattering 
amplitudes, and therefore suffers by the violation of the 
positivity criterion (as well as the Cochran relationship). 

(iv) Crystal structure solution is in general easier for 
X-ray data than for neutron data. To explain this 
statement, we give two examples: (a) For a crystal 
structure with some heavy atoms, the value of (3) is 
markedly smaller than the value of (4). This makes triplet 
relationships more reliable when X-ray data are used and 
facilitates the immediate recognition of the heavy-atom 
positions. (b) ff some H atoms are present in the crystal 
structure, they significantly contribute to Neq while they 
are negligible when X-radiation is used. Again, the 
two values (3) and (4) may be remarkably different. 
Furthermore, H atoms incoherently contribute to the total 
scattering. 

(v) The ref'mement process may be more straightfor- 
ward for neutron data. Since the scattering amplitudes b 
are nearly constant with sin 0/2, high sin 0/2 data are 
more easily measured if neutron radiation is used. 
Furthermore, the dominating role of heavy atoms in the 
refinement stage, which is often a non-negligible obstacle 
to the positioning of the light atoms, is removed. In 
particular, H atoms can be carefully localized. 

(vi) When negative scattering amplitudes are in the 
chemical formula, the location of negative peaks in the 
Fourier map is also necessary. In this case, after the 
location of the positive peaks, p(r) should be auto- 
matically transformed into -p ( r )  and negative peaks are 
found by the usual peak-search procedure. 

9. About the size of the structures solvable by direct 
methods 

Recent advances in experimental equipment and in the 
computational aspects have enlarged the size of the 
crystal structures that can be solved ab initio from 
powder data. Very recently (Morris, Harrison, Nicol, 
Wilkinson & Cheetham, 1992), it was noted that a 
disparity existed between the complexity of structures 
that could be solved ab initio from powder data and the 
complexity of the structures that in principle may be 
ref'med by the Rietveld profile method. Up to 1988, 
refinement of up to 34 atoms and 132 positional 
parameters was accomplished but the most complex 
unknown structure solved via powder data contained 
only 17 atoms in the asymmetric unit (McCusker, 
1988). In 1992, the solution and refinement of 
Ga2(HPO3) 3 • 4H20 with 29 atoms in the asymmetric 
unit and 117 structural parameters was reported (Morris, 
Harrison, Nicol, Wilkinson & Cheetham, 1992), for 
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which synchrotron X-ray and neutron powder diffraction 
data were used. The use of SHELX86 (Sheldrick, 1985) 
determined 151 phases for E values greater than 1.2, 
which, used for the calculation of an E map, showed two 
large peaks where the two Ga atoms were accommo- 
dated. Subsequent Fourier synthesis revealed four more 
atoms, which were assigned as two P and two O atoms. 

The situation has largely improved in the last two 
years. The structure of La3TisAllsO37, which has 60 
atoms in the asymmetric unit (space group Cc), is the 
largest structure ever solved from powder data (Morris, 
Owen, Stalick & Cheetham, 1994). Direct methods 
localized a limited number of atoms: the structure could 
be completed by exploiting the supplemental information 
contained in a neutron powder pattern and structure 
refinement was accomplished by using suitable geo- 
metric restraints in the least-squares process. 

The application of direct methods may not be 
straightforward even when the powder data of small 
structures are processed. Indeed, the moderate size of the 
unit cell and the frequent presence of heavy atoms may 
generate an undesirable (from the point of view of direct 
methods) effect: the pseudo-translational symmetry. This 
can greatly disturb the phasing approach and special 
procedures are often necessary to solve the crystal 
structures (Fan, Yao, Main & Woolfson, 1983; BOhme, 
1982; Gramlich 1984; Cascarano, Giacovazzo & Luif, 
1985, 1987, 1988; Cascarano, Giacovazzo, Lui6 & 
Vickovif, 1989). 

In Table 4, we give, for the test structures in Table 1, 
the mean fractional scattering power (MFSP) of the 
electron density in pseudo-translational symmetry (as 
estimated by SIRPOW.92). The percentage is often not 
negligible. A trivial application of direct methods easily 
determines the substructure, while the crystal structure 
completion presents additional difficulties. Luckily, the 
statistical analysis of the diffraction intensities can 
provide information about the nature of the pseudo- 
translational symmetry, and also an estimate of the 
MFSP. Thus, the user can apply special procedures for 
the complete crystal structure solution. 

10. The preliminary structure refinement 

In the most modem direct-methods programs for single- 
crystal data, the crystal structure is first solved by 
phasing a limited amount of structure factors, say up to 
the 500 largest intensities. Because of the unavoidable 
errors in the phasing procedure and owing to the effects 
of series truncation, the complete crystal structure is 
usually not evident from the first E map. Thus, an 
automatic refinement step follows the crystal-structure- 
solution process: phase determination is extended to a 
larger number of reflections and least-squares Fourier 
cycles are performed to recover automatically the full 
structure and refine parameters. 

Table 4. For the test structures in Table 1, the mean 
fractional scattering power (MFSP) of the electron 

density in pseudo-translational symmetry is shown 

Code MFSP (%) 

AGPZ 32 
BACO 13 
BAER 20 
BENZ 
CABA 59 
CFBR3 13 
CF3BR 21 
CFCL 28 
CFI 35 
CIM 
CROP 39 
CROX 14 
CUPZ 27 
ERVO 19 
FECOAS 33 
GLYCIN 27 
HOBA 42 
HOFE 71 
LAMO 13 
LASI 21 
LEV 23 
MES 
METYL 14 
NBPO 34 
NDBA 60 
NIZR 52 
PBS 52 
PICO 13 
RUCO 24 
RUHG 25 
SAPO 23 
SBPO 42 
SIGMA2 
STRIA 58 
SULPH 20 
T83 39 
TEAS 17 
TENI 15 
TIPORF 21 
TRAN 32 
YONO 16 

SIRPOW.92 works in a similar way. The preliminary 
structure refinement is made by a technique such as that 
described by Will, Jansen & Sch~er (1982) and Jansen, 
Schafer & Will (1988). The least-squares program 
minimizes 

S = ~ wi(loi- lci) 2, 
i=1 

where Ioi and Ici represent the ith observed and calculated 
(Lp-corrected) intensities, whether they refer to a single 
reflection or to a set of reflections. In particular, if i 
denotes a set of reflections, then 

Ici --- E m(k)lFca~e(k)[ 2" 
k 

The summation involves all the reflections belonging to 
the ith set [they are reflections that strongly overlap with 
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each other and slightly overlap (or not) with the others]. 
Such a technique requires the modification of the single- 
crystal least-squares approach. For example, the normal 
matrix corresponding to the minimization of S has, as 
generic element, 

Ctt=~-~Wi[~k mkOIfkl2c/OXl][~k 

and, as generic column term, 

b t = ~ wiAl i  ~mkOlfkl~/OXt . 
i=l k 

Since the number of observations, that is the intensities 
of the reflection clusters, is often comparable with the 
number of parameters to be refined, the refinement 
process cannot be of the same quality as for single-crystal 
data. In particular, low residual values can be attained 
between observed and calculated I values but that does 
not mean that a fully satisfactory structure refinement has 
been accomplished. However, the values of the residuals 
suggest if the correct (even if unrefined) solution has 
been found. 

In order to give an example, the performances of 
SIRPOW.92 on the test structures are shown in Table 5. It 
is evident from the table that SIRPOW.92 is often 
successful and that the percentage of atoms found is in 
general sufficient for allowing the structure completion 
by Rietveld refinement. 

I I .  Conclusions 

The great efficiency of direct methods (structures up to 
300 atoms in the asymmetric unit can be solved) 
deteriorates when they are applied to powder data. The 
main limit is the uncertainty in the structure-factor 
amplitudes, which are estimated with limited accuracy by 
fifll-pattem-decomposition programs. Since errors are 
unavoidable, the risk of failure is remarkably higher than 
for single-crystal data. What are the perspectives for 
improving the state of the art? They should not be looked 
for in new direct-methods developments, but essentially 
in two fields: 

(a) the decomposition of the diffraction pattern; 
(b) the crystal structure refinement. 
Significant improvements in (a) will generate higher 

efficiency in (b), Indeed, the recovery of a more complete 
strnctural model would be easier, the parameters under 
refinement would assume more accurate values and, very 
likely, the size of the structure accessible to direct 
methods would be enlarged. 

Luckily, there is a reserve of power that has not been 
fully exploited by the current methods for pattern 
decomposition. Indeed, the Le Bail algorithm, as well 
as the constrained Pawley techniques, only uses a limited 
amount of prior information: i.e. the mere experimental 
data, the space-group symmetry and the non-negativity 

Table 5. Results after application o f  a default run o f  
SIRPOW.92 

NAT is the number of atoms to be found, NATP the atoms found by 
SIRPOW.92, R F is the final crystallographic residual R. 

Code NAT NATP R F x 100 
AGPZ 6 5 14.35 
BACO 6 6 11.69 
BAER 16 10 - 
B ENZ 9 8 24.81 
CABA 7 5 12.48 
CFBR3 4 4 10.46 
CF3BR 5 5 16.97 
CFCL 3 3 8.64 
CFI 4 4 18.25 
CIM 17 14 28.03 
CROP 8 7 - 
CROX 15 13 11.04 
CUPZ 6 3 14.24 
ERVO 3 3 - 
FECOAS 3 3 15.47 
GLYCIN 9 9 22.16 
HOBA 8 7 14.91 
HOFE 4 4 16.54 
LAMO 14 14 - 
LASI 11 9 - 
LEV 17 11 11.46 
MES 12 10 23.17 
METYL 5 5 18.41 
NBPO 22 10 23.86 
NDBA 7 5 17.71 
NIZR 18 11 14.61 
PBS 6 5 9.02 
PICO 7 6 15.33 
RUCO 5 4 21.57 
RUHG 20 4 17.33 
SAPO 21 14 15.55 
SBPO 17 8 12.86 
SIGMA2 17 13 15.62 
STRIA 6 5 25.91 
SULPH 5 5 14.31 
T83 5 4 17.08 
TEAS 3 3 12.48 
TENI 3 3 5.77 
TIPORF 17 7 23.35 
TRAN 6 3 21.97 
YONO 18 17 7.20 

of the intensity values. No use is made of the positivity of 
the electron density, which is responsible for the X-ray 
scattering, and of the variety of information that becomes 
available during the crystal-structure-solution process. 
This includes: (a) pseudo-translational symmetry; (b) 
preferred orientation; (c) Patterson map; (d) partial 
structure. The crystallographic group in Bari has initiated 
the systematic integration of such information in the new 
version of EXTRA. We anticipate that the method will 
provide a dramatic improvement in the accuracy of 
structure-factor-amplitude estimates. 

The author thanks Dr A. Altomare, Dr G. Cascarano, 
Dr A. Guagliardi, Dr A. G. Molitemi and Dr D. Siliqi for 
many stimulating discussions and Miss C. Chiarella for 
technical support. 
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